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The three-dimensional dynamics of the coherent vortices in periodic planar mixing 
layers and in wakes subjected to solid-body rotation of axis parallel to the basic 
vorticity are investigated through direct (DNS) and large-eddy simulations (LES). 
Initially, the flow is forced by a weak random perturbation superposed on the 
basic shear, the perturbation being either quasi-two-dimensional (forced transition) 
or three-dimensional (natural transition). For an initial Rossby number Rt),  based 
on the vorticity at the inflexion point, of small modulus, the effect of rotation is to 
always make the flow more two-dimensional, whatever the sense of rotation (cyclonic 
or anticyclonic). This is in agreement with the Taylor-Proudman theorem. In this case, 
the longitudinal vortices found in forced transition without rotation are suppressed. 

It is shown that, in a cyclonic mixing layer, rotation inhibits the growth of 
three-dimensional perturbations, whatever the value of the Rossby number. This 
inhibition exists also in the anticyclonic case for [@)I < 1. At moderate anticyclonic 
rotation rates (@ < -l), the flow is strongly destabilized. Maximum destabilization 
is achieved for FZ 2.5, in good agreement with the linear-stability analysis 
performed by Yanase et al. (1993). The layer is then composed of strong longitudinal 
alternate absolute vortex tubes which are stretched by the flow and slightly inclined 
with respect to the streamwise direction. The vorticity thus generated is larger than 
in the nonrotating case. The Kelvin-Helmholtz vortices have been suppressed. The 
background velocity profile exhibits a long range of nearly constant shear whose 
vorticity exactly compensates the solid-body rotation vorticity. This is in agreement 
with the phenomenological theory proposed by Lesieur, Yanase & Mitais (1991). As 
expected, the stretching is more efficient in the LES than in the DNS. 

A rotating wake has one side cyclonic and the other anticyclonic. For 1Rt)l < 1, 
the effect of rotation is to make the wake more two-dimensional. At moderate 
rotation rates (@)I > l), the cyclonic side is composed of Karman vortices without 
longitudinal hairpin vortices. Karman vortices have disappeared from the anticyclonic 
side, which behaves like the mixing layer, with intense longitudinal absolute hairpin 
vortices. Thus, a moderate rotation has produced a dramatic symmetry breaking in 
the wake topology. Maximum destabilization is still observed for IRt)( FZ 2.5, as in 
the linear theory. 
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mean flow and the two-dimensional and three-dimensional components of the field. 
The paper also analyses the effect of rotation on the energy transfers between the 

1. Introduction 
Turbulent or transitional shear flows in a rotating frame have been extensively 

studied owing to their importance in many geophysical and engineering applications. 
Within these flows, the local Rossby number, which characterizes the relative im- 
portance of inertial and Coriolis forces, can vary significantly. Typical values of the 
Rossby number are on the order of 0.05 in mesoscale oceanic eddies and in Jupiter’s 
Great Red Spot, 0.3 for large synoptic-scale atmospheric perturbations, and 2.5 for 
the atmospheric wake of a small island. Turbulence in rotating fluids finds numer- 
ous industrial applications in turbo-machinery ; e.g. the turbulent characteristics of 
the flow in blade passages of radial pumps and compressor impellers determine the 
efficiency of these devices. Turbulence is also of great importance for the cooling by 
the fluid inside the blades. Depending upon the magnitude of the radial velocity, the 
Rossby number within rotating machines can range from values close to unity to very 
small ones (of the order 0.05). 

Owing to their engineering applications, early experiments have focused on rotating 
bounded flows such as boundary layers over flat surfaces and flow in a straight 
channel. Several basic features of the boundary layers over rotating solid surfaces 
have been determined (see e.g. Hart 1971 for the laminar channel flow; Johnston, 
Haleen & Lesius 1972 for the turbulent channel flow; Potter & Chawla 1971 for the 
laminar boundary layer; Watmuff, Witt & Joubert 1985 for the turbulent boundary 
layer). Let ii = ( i i ,O,O) be the mean velocity (x is in the streamwise direction and y in 
the direction perpendicular to the wall). The rotation vector R = (O,O, a)  is oriented 
along the spanwise direction z, and may be positive or negative. For the channel 
flow, the vorticity vector associated with the mean velocity profile o = (0, 0, -dii/dy) 
is parallel to R near one wall and antiparallel near the opposite wall; we refer to 
flow near these two particular walls as cyclonic and anticyclonic, respectively. Various 
other terms are currently used. The names suction and pressure sides originate from 
the pressure gradient due to the Coriolis force, and the terms trailing and leading 
sides are borrowed from the turbo-machinery literature. The laboratory experiments 
have shown that the cyclonic side is stabilized; as compared to the non-rotating 
case, the turbulence energy production decreases with increasing rotation rate and 
fast rotation can lead to the total suppression of turbulent transition. Conversely, 
the anticyclonic side is destabilized for moderate rotation rates (high enough Rossby 
numbers), and develops an instability in the form of large periodic longitudinal 
rolls. Numerical simulations of rotating channel flows (Kim 1983; Tafti & Vanka 
1991; Guo & Finlay 1991; Kristoffersen & Anderson 1993) have complemented the 
experimental investigations by studying in detail the influence of the rotation on the 
three-dimensional coherent structures. No experimental or numerical data seem to be 
available for high rotation rates in the anticyclonic case. 

For free-shear flows, the drastically different effects of solid-body rotation, depend- 
ing on whether the sense of rotation is cyclonic or anticyclonic, have been investigated 
in several laboratory experiments. Rothe & Johnston (1979) have analysed the large- 
eddy spanwise structures (Kelvin-Helmholtz vortices) present in the reattaching shear 
layer generated by the flow over a backward-facing step. The channel in which the 
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step is placed rotates about the spanwise axis. The reattachment length in both 
cyclonic and anticyclonic regimes is found to be notably different. In the cyclonic 
case, it is longer than in the absence of rotation: cyclonic rotation suppresses the 
three-dimensional turbulence and reinforces the spanwise vortices shed behind the 
step. When the test section was rotated in the opposite direction, the strength of 
the three-dimensional instabilities was enhanced and the reattachment length was 
shortened. The rotating mixing layer experiment (rotation axis oriented along the 
span) by Bidokhti & Tritton (1992) has confirmed the fact that the cyclonic eddies 
are rendered more two-dimensional. Conversely, Kelvin-Helmholtz vortices seem to 
be completely disrupted, even by a weak anticyclonic rotation. Furthermore, the 
measurement of Reynolds stresses indicates that this destabilization occurs in the 
early stage of the mixing layer development and is followed by a subsequent two- 
dimensionalization. Destabilization of Kelvin-Helmholtz vortices and subsequent 
two-dimensionalization can be simultaneously observed in flows like rotating wakes 
or jets. Witt & Joubert (1985) found that the wake of a cylinder whose axis is parallel 
to d exhibits asymmetry for the mean flow as well as for the turbulent quantities. 
This is confirmed by Chabert d’Hikres, Davies & Didelle (1988); they show that, 
at moderate rotation rates, the cyclonic vortices of the wake are reinforced while 
the anticyclonic ones are destroyed. Conversely, the wake is reorganized into a very 
regular two-dimensional Karman street of alternate vortices at high rotation rates. 
Satellite observations of atmospheric wakes displayed by clouds also exhibit strong 
asymmetrical eddy structures (Etling 1990). 

Therefore, there are three basic effects associated with rotating bounded- or free- 
shear flows. (i) If the shear vorticity is parallel to and of same sign as the ro- 
tation vector, the flow is made more two-dimensional. (ii) If the two vectors are 
anti-parallel, destabilization is observed at moderate rotation rates, while (iii) two- 
dimensionalization is recovered for fast rotation. For a two-dimensional flow in a 
plane perpendicular to the rotation axis, the Coriolis force is proportional to the 
gradient of the stream function, and may be included with the pressure. Therefore, 
without change of the boundary conditions relative to the rotating axes, a solid-body 
rotation of a two-dimensional flow system does not modify the velocity distribu- 
tion. Thus, the phenomena observed in the laboratory experiments can only be 
explained by considering the influence of rotation on the growth of three-dimensional 
perturbations. 

1.1. Linear-stability analysis 
In order to describe the early stage of the development, Yanase et al. (1993) have 
performed a three-dimensional, viscous, linear-stability analysis of two planar free- 
shear flows subject to rigid-body rotation oriented along the span: the mixing layer 
and the plane wake. The mean velocity is oriented in the longitudinal direction x and 
varies with y, [U(y), 0, 01. The rotation vector is the spanwise direction z ,  d = (O,O, 52). 
The Rossby number is here based upon the maximum vorticity of the basic profile, 
that is, the vorticity at the inflexion point(s), -(dii/dy)i, i.e. 

&, = -(dii/dy)i/252 . (1.1) 

In the mixing layer, I?, is positive for cyclonic rotation and negative for anticyclonic 
rotation. For the wake, one considers the modulus 1I?,1 of the Rossby number. From 
the linearized governing equations, it is shown that cyclonic rotation prevents the 
growth of three-dimensional perturbations and two-dimensionalization is observed. 
For strong anticyclonic rotation (& > -1) the effect is similar. For moderate 
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anticyclonic rotation (& < - l), however, the flow stability is dramatically modified. 
In this regime, a new instability appears along the k,-axis ( k ,  = 0), corresponding 
to a purely streamwise instability. Following Bidokhti & Tritton (1992), this will be 
designated the shear/Coriolis instability. For both the mixing layer and the wake, this 
shear/Coriolis instability has larger amplification rates than the co-existing Kelvin- 
Helmholtz instability for roughly the range -8 < & < -1.5, and its effect is maximum 
for I-& = -2.5. Yanase et al. (1993) have also shown that, for purely longitudinal 
modes ( k ,  = 0), and if the stability problem is reduced to perturbations such that 
k, = 0, a necessary and sufficient condition for inviscid instability is that the local 
Rossby number &(y) = -(dii/dy)/29 should be smaller than -1 somewhere in the 
layer. This result was previously found by Pedley (1969) and Hart (1971). A similar 
criterion, based upon an analogy with stratified flows, was proposed by Bradshaw 
(1969) and later reproduced by Tritton & Davies (1985) through phenomenological 
arguments. 

For a purely longitudinal perturbation, the eigenvalue equation is similar to the one 
governing the radial velocity when studying the inviscid linear centrifugal instability 
in the limit of axisymmetric disturbances. This emphasizes the close relationship 
between the present problem and the stability of flows between rotating, concentric 
cylinders (the Couette-Taylor problem), flows in curved channels (the Dean problem), 
and flows along curved boundaries (the Gortler problem). In each of these cases, the 
instability leads to the amplification of a purely streamwise mode, which eventually 
produces vortices aligned with the basic velocity streamlines : Couette-Taylor vortices, 
Gortler vortices, etc. 

1.2. Vorticity dynamics 
1.2.1. Quasi-linear theory 

Further insight into the shear/Coriolis instability can be obtained by examining the 
vorticity dynamics. We considerer a Cartesian reference frame x = (x, y, z )  rotating 
with angular velocity 9 oriented along the z-axis. Here u = (u,v, w )  designates the 
relative velocity. Adding to the relative vorticity o the solid-body rotation vorticity 
2 9  (entrainment vorticity), one obtains the absolute vorticity o, = o + 29,  the 
vorticity of the fluid in the absolute frame. The equation for the absolute vorticity is 

-- do, - (0, * V)u + vv20, , 
dt 

where d/dt stands for the substantial derivative. Writing the velocity and relative vor- 
ticity as sums of the basic fields plus a small perturbation, d(x ,  y, z, t) and d(x,  y, z, t), 
yields : 

4x3 Y, z ,  t) = N Y )  x + uI(x, Y, 2,  t) 9 (1.3) 

o,(x, y, 2, t) = 2 9  - - 2 + oI(x, y, 2, t) . ( 1-41 ( 3 
Substituting this into (1.2), one obtains to the lowest order (for a perfect fluid) 
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where d/dt stands now for the substantial derivative following the basic flow, and oi 
and 01 are the components of w’ in x and y .  Assuming d/ax(-) = 0 (the shear/Coriolis 
instability), and under the simplifying assumption that -du’/dz NN o:, equations ( 1.5) 
and (1.6) reduce to 

am: 
- = 2520; , 
dt 

This quasi-linear model has been suggested by Tritton (199 1, private communication). 
Equations (1.7) and (1.8) can also be recovered by considering an exact solution of 
Euler’s equations in terms of sheets of fluid moving independently (Mitais et al. 1992). 
The perturbation equations (1.7) and (1.8) then reduce to the following equation for 
0: : 

dt2 
This indicates, that, in the linear regime, the longitudinal vorticity component grows 
exponentially in the regions such that & < -1, in agreement with the results of the 
linear-stability analysis. Furthermore, for a given background vorticity -dii/dy and 
varying 52, maximum amplification is achieved for & = -2. In this case, (1.7) and 
(1.8) imply the same amplification rate for m: and wb, since 

(1.10) 

For mL.0) = mb(O), this yields the formation of vortex filaments oriented at 45” with 
respect to the x-direction. As suggested by Tritton (1991, private communication), 
this results from a balance involving stretching of vorticity, turning of mean flow 
vorticity by the perturbation and turning of perturbation vorticity by the mean shear 
(see also Yanase et al. 1993). 

1.2.2. The nonlinear regime: the mechanism of weak absolute vorticity stretching 
The previous analysis allows the description of the early, linear stage of the 

perturbation growth, being based upon a linearization of the governing equations. 
Further insight into the nonlinear regime can be obtained by examining the vorticity 
stretching mechanisms. In a previous study (Lesieur, Yanase & Mktais 1991), we have 
emphasized the importance of considering the absolute vorticity, since, in the presence 
of rotation, Kelvin’s theorem directly applies to it. If the viscosity is neglected, absolute 
vortex filaments are material. We suppose that they will be stretched in a hairpin 
manner by the ambient shear if the initial absolute vorticity is weak enough, thus 
producing longitudinal relative vorticity and three-dimensionalization. Let us make 
this argument precise. The relative vorticity is the sum of the background -(dii/dy)z 
and fluctuating w’ components. The absolute vorticity is then (252 - dii/dy) z + 0’. If 
the flow is locally cyclonic (i.e. 52 and - (dii/dy) have the same sign), then the absolute 
vortex lines are closer to the spanwise direction than the corresponding relative ones, 
and the absolute vorticity is larger than its relative counterpart. Therefore, as 
compared to the nonrotating case, the effectiveness of vortex turning and stretching is 
reduced. Conversely, if the flow is locally anticyclonic, especially for the regions where 
252 has a value close to dii/dy (weak absolute spanwise vorticity), absolute vortex 
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lines are very convoluted, and will be rapidly stretched out, as would dye. It was thus 
suggested that in rotating mixing layers and wakes, the vortex filaments with local 
Rossby number near -1 (hence anticyclonic) would be stretched into longitudinal 
alternate vortices. This phenomenological theory will be referred to as the weak 
absolute vorticity stretching mechanism. 

In this paper, we present both direct and large-eddy numerical simulations of planar 
mixing layers and wakes subjected to solid-body rotation with axis perpendicular 
to the plane of the background flow. The case of temporally growing flows is 
investigated here. Preliminary results have been obtained concerning spatially growing 
flows (Mktais, Riley & Lesieur 1993), and a more complete study will be presented 
elsewhere. The numerical methods are presented in 9 2. Sections 3 and 4 are devoted to 
the presentation of the computational results. In 0 3, the initial perturbation imposed 
on the basic velocity profile is quasi-two-dimensional both for the mixing layer and 
the wake (forced transition). The absolute value of the Rossby number ranges from 
large (slow rotation) to small (rapid rotation) values. Both cyclonic and anticyclonic 
cases are investigated. Section 4 focuses on the regime of maximum anticyclonic 
destabilization. The influences of the initial perturbation (natural or forced) and of 
the Reynolds number (DNS or LES) are considered. Special attention is given to 
the coherent-vortex dynamics and stretching mechanisms. The numerical results are 
interpreted in the light of both the linear-stability analyses and the weak absolute 
vorticity stretching mechanism. This paper is the second in a series of three papers 
devoted to the influence of solid-body rotation upon turbulence. In part I (Yanase 
et al. 1993) the linear instability of mixing layers and wakes was studied. Here (part 
TI), we use direct and large-eddy simulations to go beyond the instability theory. In a 
third paper (Bartello, Mktais & Lesieur 1994), the influence of rotation upon initially 
isotropic turbulence is considered. 

2. Numerical methods and governing parameters 
2.1. Governing equations 

The governing equations are the Navier-Stokes and continuity equations written in a 
Cartesian frame of reference, x, y ,  z, moving with the rigid-body rotation of angular 
velocity R = (O,O, a): 

v . u = o ,  
au 1 
- + (w + 2 0 )  x u = --vn + V V * U  . 
at Po 

Here u = (u,u, w )  and w = (cox ,coy ,coz)  are the relative velocity and vorticity vectors. 
n = p + 2 p ~ u 2  - ipo(i2 xr).(R x r )  corresponds to the modified pressure, with r the 
position vector, p the static pressure (including gravity) and po the (constant) density. 

Two prototypes of flows are considered, the mixing layer and the plane wake. For 
the mixing layer the (initial) mean velocity profile is of hyperbolic-tangent form, i.e. 

1 

Y 
6 

~ ( y )  = Uo tanh - , (2.3) 

where 2Uo is the velocity difference accross the layer, and 6 = 6,/2, with 6, initial 
vorticity thickness (Si  = 2Ug/ldZi/dylmax). For the wake, we take a Gaussian mean 
velocity profile given by 
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where Uo is now the peak deficit velocity. Such a form is justified by the fact that 
we use a temporal approximation, where the velocity may be reversed and arbitrarily 
translated. 6 is related to the initial half-width rm through r ,  = (21n2/e)'I26 = 0.716. 
U, and 6 have been defined so that lUol/6 is the magnitude of the maximum initial 
background vorticity for each case. To be consistent with the companion paper by 
Yanase et al. (1993), we base the characteristic Rossby number on the vorticity 
extrema associated with the mean velocity profiles. As opposed to the linear stability 
analysis performed on mean profiles taken independent of time, these, however, 
vary when solving the full Navier-Stokes equations. Therefore, we here base the 
characteristic parameters upon the initial mean profiles, and mark the corresponding 
quantities with the superscript (i). Note that, in the initial linear regime, the temporal 
variations of these profiles remain negligible ahead of the exponential growth of the 
perturbations. Thus, during that stage, the Rossby number can be considered to be 
nearly constant and the numerical simulations results can be directly compared with 
the linear stability analysis. For the mixing layer, the vorticity extremum is given by 

such that 

Here, we define @, UO and 0 to be positive or negative, but 6 positive. Therefore, 
R!) is positive for cyclonic rotation (UO and i2 of opposite sign) and negative for 
anticyclonic rotation. The plane wake presents two vorticity extrema, 

such that R!) given by (2.6) has one sign for y > 0 and the opposite sign for y < 0. 
One side of the wake is cyclonic, while the other is anticyclonic. In fact, the results for 
the wake will be presented in terms of /R!)l = m$/2i2 . The second non-dimensional 
parameter is the initial Reynolds number, 

I I  

More conventionally, the Reynolds number is based on ai for the mixing layer and 
on rm for the wake; the multiplying factors to recover the conventional notations are 
respectively 2 and 0.71 (approximately). 

2.2. Numerical methods 
For both flows, periodicity is assumed in the streamwise direction x (the temporal 
hypothesis) as well as in the spanwise direction y .  In these directions, the variables are 
expanded in Fourier series and a classical collocation method is used. The wake profile 
given by (2.4) is compatible with periodicity assumptions and the shear direction can 
be treated similarly to the other two directions. For the mixing layer, in the absence 
of rotation, it is possible to expand the u and w components of the velocity field in 
cosine series with respect to y ,  and u in a sine series. It is not possible to use this 
procedure in the presence of the Coriolis force. Indeed, the sine series for u leads, 
in the equations of motion, to sums of terms with cosine symmetry and terms with 
sine symmetry. To tackle this difficulty, we have simulated a double mixing layer, 
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FIGURE 1. Correspondence between the physical space (y-space) and its image ([-space). 

with both layers extending to infinity in the y-direction. These two infinite spaces 
can be mapped onto a single interval of finite extent in the computational coordinate 
( (Cain, Ferziger & Reynolds 1984). The cotangent mapping is a suitable mapping 
function for this purpose: 

y = h( ( )  = -b cot c , (2.9) 
where b is an adjustable constant called the stretching parameter. Here we have taken 
b = 4. We let ( vary in the interval [0,271] such that the image of the [-space 
corresponds to two infinite regions -a < y < +oo (for c E [O,.n[ and for c E ]x,271], 
see figure 1). The background velocity field in the c-space is defined as 

(2.10) h(5) U(5 )  = UO tanh - , for c E ]O,.n[ , 
6 
40 U ( c )  = -UO tanh - , for ( E ].n,2n[ 

6 
(2.11) 

and completed through continuity in O,.n, and 2.n with U(0)  = -U(.n) = U(2.n) = UO. 
It is then possible to apply the usual Fourier collocation method in the (-direction. 
Through this procedure, two mixing layers of infinite extent are simultaneously 
simulated in the y-space; for positive Uo, the vorticity associated with the mean 
velocity profile of the first one is negative [fi(y) = UO tanhy/6], while it is positive for 
the second [ii(y) = -UO tanhy/6]. When solid-body rotation is imposed, one single 
run then allows the simultaneous computation a cyclonic mixing layer and also an 
anticyclonic one of opposite-signed Rossby number. 

When used, the large-eddy simulations will be based on the structure-function 
model (see 94.3; MCtais & Lesieur 1992). 

2.3. Initial conditions 
For all the runs, the longitudinal length of the computational domain is equal to twice 
the wavelength Ax of the most amplified mode based upon inviscid linear-stability 
theory, viz. 7.07~5~ for the mixing layer (Michalke 1964), and 7.96rm for the plane wake 
(Sato & Kuriki 1961). In the case of the wake, the computational domain is cubic. 
For the mixing layer, the spanwise length of the computational domain is equal to 
the longitudinal length, while the length in the shear direction extends to infinity. 

Initially, a low-amplitude random noise is superposed upon the mean velocity 
profiles given by (2.3) and (2.4). Several numerical and laboratory experiments have 
demonstrated the strong influence of initial conditions on the long time evolution 
of the free-shear flows: see e.g. Comte, Lesieur & Lamballais (1992), for the three- 
dimensional mixing-layer ; Williamson & Prasad (1993), for the plane wake. We have 
here successively considered two different types of perturbations. First, a quasi-two- 
dimensional one consisting of the superposition of a purely two-dimensional pertur- 
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bation (z independent) of kinetic energy €20 U i  and a three-dimensional perturbation 
of energy € 3 0 ~ ; .  For the mixing layer, €20 = 1063~ = 
for the wake. The kinetic energy spectrum for each velocity component is given by 

and €20 = €30  = 2 x 

E ( k )  cc k8 exp(-4k2/k:) , (2.12) 

where k = llkll, corresponding to a narrow-banded spectrum peaking at wavenumber 
k,. In this case, k, = 2. Therefore, in the first case the fundamental mode is 
emphasized, biasing the formation of the Kelvin-Helmholtz vortices of the mixing 
layer or the wake. This will be referred to as the ‘forced transition’ case. 

The second type of perturbation which has been considered is purely three- 
dimensional, with €30 = and eZD = 0. Now we choose a broad-band spectrum 
exhibiting, over most of the wavenumbers, a k2 energy equipartition behaviour 

E ( k )  cc k2 exp(-k2/k2) . (2.13) 

Here, k, = 14. In this case, there is no favoured mode, and the most amplified 
one can freely emerge. This will be called the ‘natural transition’ case, where the 
three-dimensional initial perturbation plays the role of residual turbulence superposed 
upon the basic flow. 

For the wake, the calculations are performed with 64 x 64 x 64 modes in the x-, 
y - ,  and z-directions, respectively. 64 x 128 x 64 grid points are used to simulate the 
double mixing layer. The Reynolds numbers Re(’) = lUolS/v are 50 for the mixing 
layer and 280 for the wake. The corresponding Reynolds numbers based upon 6’ 
and rm are then 100 and 200. For a spatially evolving wake, of upstream velocity Uo 
behind a cylinder of diameter d NN 2rm, this would correspond to a Reynolds number 
Uod/v NN 400. 

3. Numerical experiments: forced transition 

3.1.1. Statistics 
The present computations complement and extend those previously performed at 

lower resolution for the mixing layer by Lesieur et al. (1991). In that paper it 
was shown, in particular, that at R!) = -0.25 the effect of rotation is to make the 
anticyclonic mixing layer less three-dimensional, in agreement with Taylor-Proudman 
theorem. The same effect occurs at lR$)l = 0.5 in a wake (Flores 1993) and in initially 
quasi-two-dimensional and three-dimensional isotropic turbulence subject to rotation 
(Bartello et al. 1994). 

In shear flows, the development of three-dimensional instabilities yields the lon- 
gitudinal stretching of the vortex filaments by the basic shear. Therefore, the time 
evolution of the enstrophy associated with the vorticity components perpendicular to 
the mean flow vorticity 4 (or:) = 4 (or: + or2 represents a good indicator of the 
flow three-dimensionality (see figure 2). Although it involves the vorticity components 
both in the shear and streamwise directions, it will be referred to as the ‘longitudinal’ 
enstrophy with reference to the so-called longitudinal vortices observed in shear flows. 
We recall that a prime refers to the perturbed fields. The brackets denote the average 
over the entire cyclonic side of the computational domain for figure 2(a) and over the 
entire anticyclonic side for figure 2( b). Direct numerical simulations are performed 
at lR$)l = co, 20,10,5,2.5,1, where = co denotes the case with no solid-body 
rotation. 

3.1. The mixing layer 

J 
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In the absence of rotation, and after an initial adjustment stage, the stretching 
mechanisms lead to longitudinal vorticity amplification. This corresponds to the 
stretching of longitudinal vorticity, especially in the stagnation regions between the 
Kelvin-Helmholtz vortices. If D is the deformation tensor in this region, in the 
inviscid case the vorticity satisfies: 

- \ - - .  - 
1 

.-. 
104 I I I I I I I I I I I I I I ' I 1 ' 3 ' I I 4 I 

d o  
- = D : o .  
dt 

If one assumes that the eigenvectors and eigenvalues of D do not change very 
much, the longitudinal vorticity will be stretched exponentially in the direction of the 
first principal axis of deformation, that is, at approximately 45" with respect to the 
(x,z)-plane. 

In the cyclonic case (figure 2a), the three-dimensionality is less and less pronounced 
as the initial Rossby number is decreased from infinity to smaller and smaller 
values. This is the demonstration that the longitudinal stretching is inhibited by 
cyclonic rotation. The anticyclonic rotation has an extremely different effect on the 
longitudinal vorticity developement (figure 2b). For Rt) = -20, -10, -5, and -2.5, 
the flow is destabilized: the initial growth rate of the longitudinal enstrophy is higher 
than in the nonrotating case. When the Rossby number goes from -2.5 to -1, there 
is a sharp transition, since the effect of rotation is again stabilizing. The situation is 
then very similar to the cyclonic case. 

Since small initial perturbations are applied, we examine the early stage of the 
instability characteristics in the light of linear-stability analysis performed by Yanase 
et al. (1993). The numerical simulations confirm their results: cyclonic rotation 
as well as strong anticyclonic rotation tend to inhibit three-dimensional motions, 
whereas weaker anticyclonic rotation (& < -1) acts to amplify them. The linear 
analysis shows that the growth of the shear/Coriolis instability mode (k ,  = 0) is 
maximum around & = -2.5 and decreases as & goes to smaller negative values. 
As far as the numerical simulations are concerned, the growth rate of the perturbed 
kinetic energy is initially comparable for Rt) = -2.5 and Rt)  = -5 (slightly larger in 
the former case). The nonlinear effects, however, imply a departure from the linear 
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FIGURE 3. Anticyclonic mixing layer at & = -5. Time evolution of the kinetic 

energy fluctuations in various spectral modes mkxkr. 

predictions, and occur earlier for R t )  = -2.5. At R!) = -5 and Re(') = 50, Yanase et 
al. (1993) have predicted that the maximum shear/Coriolis growth rate takes place 
for the mode such that ksc NN 3 k ~ ~  ( k ,  = 0), where kKH is the wavenumber of the 
most unstable Kelvin-Helmholtz mode. It was also predicted that its amplification 
rate would be equal to approximately 1.4 times that of the most unstable Kelvin- 
Helmholtz mode. Notice that ksc increases with the Reynolds number (see Yanase et 
al. 1993); numerical simulations are therefore constrained to low Reynolds number 
values in order to properly resolve this mode. For the anticyclonic mixing layer at 
I?, = -5 as given by the numerical simulation, figure 3 shows the time evolution of 
the kinetic energy fluctuations contained in the various spectral modes, designated 
by mkxbz, where m2,o is the fundamental (most unstable) Kelvin-Helmholtz mode. 
An average is performed in the y-direction. The early development is dominated by 
the Kelvin-Helmholtz mode. The fastest growth is observed for m,6, however, in 
agreement with the linear-stability analysis. Other longitudinal modes such as %,3 

exhibit a strong amplification. The same holds for the oblique modes m2,3 and m2,6. 

This eventually leads for t > 20 Si/lVol to a highly nonlinear state with a wide range 
of excited modes. But the most energetic mode in the final stage becomes the purely 
longitudinal mode m,3. In the nonlinear regime, the energy is efficiently transferred 
to smaller scales where viscous dissipation takes place: this yields a saturation of the 
perturbation growth for t > 30 Si/lV0l (see figure 2b). 

We now examine in detail how rotation selectively, affects the time evolution of 
the two-dimensional and three-dimensional components of the motion as well as 
the energy transfer between them. For this purpose, we decompose the velocity 
field fluctuations u:(x, y ,  z, t )  into its two-dimensional part Bi(x, y ,  t ) ,  independent of z 
(obtained by averaging in the z-direction), and its three-dimensional part u;(x, y ,  z, t). 
The total field is then 

(3.2) 

standing for the average in the x- and 

ui(x, Y ,  Z,  t )  = Ui(y, t )  + Bi(x, y ,  t )  + u ; ( ~ ,  y ,  Z, t )  , 
where iii(y, t )  is the basic field, the operator 
z-directions. 
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stress: (a) nonrotating case; (b )  cyclonic case, Rf) = 5 ;  ( c )  anticyclonic case, Rf) = -5. 
FIGURE 4. Mixing layer. Time evolution of the two-dimensional contribution to the Reynolds 

We first consider the time evolution of the Reynolds stress components. One can 
show that 

(3.3) 

Figure 4 displays the time evolution of the two-dimensional contribution to the 
Reynolds stress. The nonrotating case (figure 4a) is compared to the cyclonic and 
anticyclonic cases (figures 4b and 4c) corresponding respectively to R!) = 5 and -5. 
In the nonrotating case, the most significative components are f i 2 ,  ijz and 3. Both 
for cyclonic and anticyclonic rotation, the components of the two-dimensional stress 
are weakly affected by the rotation for t < 256i/lUol. Afterwards, their growth is 
inhibited in the anticyclonic case, except for 3, which exhibits larger values than in 
the nonrotating case. Conversely, the stress components are enhanced by the cyclonic 
rotation, except 3 which is now reduced; this clearly shows a tendency of flow to 
become more two-dimensional. 
- The effects are dramatically different when the three-dimensional components 
u;u; of the stress are considered (see figure 5). Since the initial conditions are 
quasi-two-dimensional, the three-dimensional stress components are slightly smaller 
than the two-dimensional ones in the nonrotating case. The trend toward two- 
dimensionalization in the cyclonic case is confirmed by the total inhibition of the 
three-dimensional stress components. On the other hand, these are considerably 
amplified by a moderate anticyclonic rotation. 

The equations governing the kinetic energy evolution for each of the components 
ii, fi and U* involve various contributions to the energetic transfer. Among those, we 
here consider 

_ _  
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FIGURE 5. Same as figure 4 but for the three-dimensional components of the Reynolds stress. 
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RGURE 6. Mixing layer. Time evolution of Tm2, Tm3 and T23 (see (3.4); (3 .5) ;  (3.6)): 

(a) Rf) = m; (b )  Rf) = 5 (cyclonic); ( c )  Rt) = -5 (anticyclonic). 

where J,(.)dy designates the integral over the whole y extent of the cyclonic or 
anticyclonic side of the computational domain 9. A positive value for Tm2 signifies an 
energy transfer from the mean flow to the two-dimensional component of the motion. 
Similarly, the energy is transferred from the mean flow to the three-dimensional 
component when Tm3 > 0 , and from the two-dimensional to the three-dimensional 
component when T23 > 0. Figure 6 represents the time evolution of Tm2, Tm3 and T23 
for the three cases: ( a )  Rt) = 00 ; (b )  Rt) = 5 (cyclonic); (c )  Rt) = -5 (anticyclonic). 
In the non-rotating case, the energy transfer is mainly directed from the mean flow to 
the two-dimensional component (Kelvin-Helmholtz vortices). The three-dimensional 
part of the motion only extracts a weak portion of the mean flow energy. This 
corresponds to the stretching of hairpin vortices by the basic shear. In the cyclonic 
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mixing layer, the latter exchange is completely inhibited, and the energy exchanges 
are preferably directed from the mean flow to the two-dimensional component of 
the motion, corresponding to an enhancement of Tm2. By contrast, for anticyclonic 
rotation, the flow is rendered much more three-dimensional: the energy tranfer is 
mainly directed from the mean flow to the three-dimensional motion, and very little 
is transferred to the two-dimensional part. This indicates a very intense stretching of 
longitudinal vorticity by the basic shear, and the disappearance of two-dimensional 
Kelvin-Helmholtz vortices. 

3.1.2. Coherent vortices 

Now we look at the three-dimensional flow structure. We focus on the relative 
vorticity iso-surfaces at t = 17.86,/1Uol obtained in the nonrotating case (R!) = co), 
and for anticyclonic rotation at R!) = -5 and R!) = -1. 

(i) R$) = 00. Figure 7(a) shows the iso-contours of spanwise vorticity correspond- 
ing to 45% of 1oti1, where coth is the maximum vorticity associated with the initial 
mean velocity profile (see (2.5)). Here, one observes quasi-two-dimensional Kelvin- 
Helmholtz billows, slightly distorted in the spanwise direction. Weak longitudinal 
vortices are stretched between the primary rolls; these are identified by observing 
isosurfaces of longitudinal vorticity ol = (a: + corresponding to the very low 
value of about 4.5% of lothl. This longitudinal vortex stretching increases with 
increasing Reynolds number, as has been checked using DNS. LES also allows the 
very efficient stretching of the longitudinal vorticity (see below). 

(ii) R!) = -1. Figure 7(b) displays the spanwise vorticity field with the same 
iso-contour value as in the nonrotating case. Anticyclonic and cyclonic flows are 
similar at this Rossby number, as a strong two-dimensionalization is observed in both 
cases. The longitudinal vortices have disappeared. In addition, the tendency towards 
two-dimensionality can be observed in the cyclonic case even for large positive Rt). 

(iii) R!) = -5. The Kelvin-Helmholtz vortices are highly distorted and exhibit 
strong oscillations along the spanwise direction (see figure 7c). The longitudinal 
vorticity is much higher than in the nonrotating case, and the two Kelvin-Helmholtz 
rolls are linked with longitudinal hairpin vortices shown here by the isosurfaces at 
22.5% of lcotil. Figure 8 shows a time sequence of isosurfaces of the relative vorticity 
modulus at t = 17.8 (figure 8a), t = 22.3 (figure 8b) and t = 26.86i/lU~l (figure 8c). 
The first picture is similar to figure 7(c) but the iso-contours are different; we see 
the simultaneous formation of Kelvin-Helmholtz vortices and longitudinal hairpin 
vortices which are stretched in between. As time goes on, this produces a significant 
increase of the longitudinal component of the vorticity. By the end of the run 
(figure 8c), the Kelvin-Helmholtz vortices have been totally dislocated and the flow 
is entirely composed of hairpin-shaped longitudinal vortices. A similar sequence had 
been proposed in this case by Lesieur et al. (1991), using the weak absolute vorticity 
stretching mechanism : weak absolute vorticity in the stagnation region between 
the Kelvin-Helmholtz rollers would be stretched longitudinally between the latter, 
yielding longitudinal alternate vortices which should destroy the primary vortices. One 
can notice that the spanwise wavelength of the vortices is one third of the spanwise 
extent of the computational domain. This corresponds to the growth of the m,3 mode 
already observed in figure 3. More details on the formation mechanisms of these 
vortices will be given in $4. 
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FIGURE 7. Mixing layer. Relative vorticity isosurfaces at t = 17.86i/(Uo(. (a) Nonrotating case: 
w, = 45% of IwtAI, light gray; w~ = 4.5% of IwtAl coloured by the sign of w,, black w, < 0, dark 
gray w, > 0. (b )  @) = -1: w, = 45% of 1wtA1, light gray. ( c )  R!) = -5: w, = 45% of IwtAI, light 
gray; of = 22.5% of IwfAl coloured by the sign of w,, black w, < 0, dark gray w, > 0. 

3.2. The plane wake 

3.2.1. Statistics 

Cyclonic and anticyclonic vortices are now simultaneously present within the com- 
putational domain. Figure 9 is the analogue of figure 2 for the case of the wake: 
$ (wry)  designates a spatial average of the fluctuating longitudinal enstrophy over 
the points of the computational domain at which the total relative spanwise vorticity 
is positive (cyclonic) for figure 9(a) and negative (anticyclonic) for figure 9(b). The 
Rossby numbers considered here are = 00, 7, 2.5, 1.3 and 0.5. On the anticyclonic 
side, the time evolution of exhibits similar features to those observed for the 
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FIGURE 8. Anticyclonic mixing layer at R!) = -5. Relative vorticity isosurfaces at: (a) t = 17.8; 
( b )  t = 22.3; (c) t = 26.8hi/lU0l. w,'= 45% of Iw$l, blue; W I  = 45% of IwfLl coloured by the sign 
of w,, orange w, < 0, green w, > 0. 



Numerical simulations of rotating free-shear flows 63 

0 20 40 60 80 0 20 40 60 80 

Time, r,ll Uol 
FIGURE 9. Plane wake. Time evolution of the relative longitudinal vorticity half-variance 
4 (d:) = $ ( c o l a  +a’:) (normalized by m t z )  for = co, 7, 2.5, 1.3 and 0.5. The time unit 
is rm/lUol. Spatial average over the points of the computational domain at which the total relative 
spanwise vorticity is positive (cyclonic) for (a) and negative (anticyclonic) for (b) .  

Time, r,ll Uol 

anticyclonic mixing layer. For lR!)l = 7 and 2.5, the perturbation rapidly grows in 
the initial stages, then saturates and eventually decreases. The maximum anticyclonic 
three-dimensionalization occurs at = 2.5. On the cyclonic side (figure 9a), the 
rotation is initially stabilizing for all simulated values of the Rossby number. Later 
on, for 1R:)I = 7 and 2.5, the instantaneous growth of 0’: is stronger than that 
observed without rotation. This is probably due to the strong three-dimensionalization 
of the anticyclonic side of the wake, causing the spanwise vorticity to locally change its 
sign and become cyclonic. These regions then contribute to the ‘cyclonic’ longitudinal 
vorticity variance. Furthermore, as shown below, the cyclonic eddies of the Karman 
street become more three-dimensional than in the nonrotating case because of their 
interaction with the highly three-dimensional anticyclonic ones. For 1R:)l = 0.5, 
oscillations are observed which may indicate inertial wave propagation. 

The linear-stability analysis of the planar wake performed by Yanase et al. (1993) 
gives a maximum destabilization effect for 1R:)I w 2.5. The overall maximum growth 
rate of the shear/Coriolis instability in this case (for Re(’) w 280) was observed for 
ksc w 3 . 3 k ~ ,  where k~ corresponds to the fundamental (most unstable) Karman 
mode. The nonlinear simulation shows good agreement with the linear prediction as 
far as the Rossby number of maximum destabilization is concerned. Figure 10 exhibits 
the time evolution of the kinetic energy in the various mkx;p, modes averaged over the 
entire y-direction (both the cyclonic and anticyclonic sides) for the case = 2.5. 
In our computation, m2,o is the fundamental Kelvin-Helmholtz mode of the Karman 
street. Therefore, m0,6 roughly corresponds to the most amplified shear/Coriolis 
instability mode predicted by the linear-stability analysis. The fastest initial growth 
is indeed observed for this mode. Owing to the nature of the initial perturbation, 
however, mo,4 dominates all the other longitudinal modes during the entire evolution. 
It ultimately reaches an energy level comparable with the fundamental mode m2,o and 
its subharmonic ml,o. As in the mixing layer case, several oblique modes such as m2,4 
are also quickly excited, leading to a highly nonlinear regime. 

To address the issue of flow two-dimensionalization by the rotation, we next 
consider the dependence of the kinetic energy spectrum on the spanwise wavenumber 
k,  (see figure 11). We compare here, at t = 48.4 rm/lUol, the spectra obtained in 

0 
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FIGURE 11. Plane wake at = 2.5. Kinetic energy spectrum versus the spanwise wavenumber k, 

at t = 48.4rm/)Uol and If$)\ = 00,7,2.5,1.3 and 0.5. 

the nonrotating case, and in the rotating cases for \R!)l = 7,2.5,1.3 and 0.5. An 
average is performed in the x- and the entire y- (cyclonic and anticyclonic) directions. 
In the destabilized cases (lR!)( = 7 and 2.5), the wake exhibits significantly more 
energy at the large k, wavenumbers than in the nonrotating case. As the Rossby 
number is decreased from 7 to 0.5, however, the energy spectrum is more and more 
confined around the wavenumber k,  = 0; this shows a clear trend towards flow two- 
dimensionalization, again displaying consistency with the Taylor-Proudman theorem. 

3.2.2. Coherent vortices 
Similarly to the mixing layer case, we concentrate on relative vorticity iso-surfaces. 

We consider here the vortices late in their evolution, at t = 48.4 r,,,/IUoI, for 
the nonrotating case, and for the rotating cases corresponding to lR!)l = 2.5 and 
lR!)\ = 0.5. 
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(i) 1R:)I = co. Figure 12(a) displays the iso-contours of spanwise vorticity corre- 
sponding to 250% of 1ofh1, where cofh is defined in (2.7). The Reynolds number 
is higher than for the mixing layer computation, presented in the previous section; 
here Re(') = 280. Furthermore, the initial noise is less two-dimensional with a higher 
relative amplitude of the three-dimensional part. Since the computational domain 
length is twice the most amplified wavelength predicted by the linear-stability analy- 
sis, the Karman street consists of two pairs of alternate-sign vortices. Owing to less 
important viscous effects, the spanwise oscillations of these quasi-two-dimensional 
billows are more pronounced. The strong three-dimensionality yields the stretching 
of longitudinal vortices. These are located within the braids connecting consecutive 
Karman vortices of anti-parallel vorticity and have an intensity comparable with the 
latter. These longitudinal structures are identified through isosurfaces of longitudinal 
vorticity equal to 50% of lothl. The influence of viscosity on the stretching mecha- 
nisms will be discussed in $4, through comparisons of the present direct numerical 
simulations with large-eddy simulations. 

(ii) /R!)l = 2.5. Figures 12(b) and 12(c) show, at an identical time, the same vorticity 
component iso-contours as in the nonrotating case. As demonstrated by the statistics, 
this case corresponds to maximum anticyclonic destabilization. Spanwise oscillations 
of the two cyclonic Karman-street vortices are induced; these remain linked by an 
oscillating sheet of spanwise vorticity (see figure 12b). On the anticyclonic side, one 
observes intense hairpin vortices analogous to the ones observed in the anticyclonic 
mixing layer (see figure 8c). Their spanwise wavelength here is one-fourth of the 
spanwise extent of the computational domain. The anticyclonic Karman vortices 
have disappeared. 

Now the high rotation rate has reorganized the wake into 
two-dimensional, alternating-signed vortices, and the hairpin vortices are no longer 
identifiable. We plot in figure 12(d) iso-contours of the relative vorticity modulus 
1 1 0 1 1  = (0; +02 + w : ) ' / ~  corresponding to 50% of lo$hl. The isosurfaces are coloured 
by the value of the pressure P ,  where P includes the centrifugal acceleration, i.e. 

(iii) 1R:)I = 0.5. 

Po 2 2  

2 
P = p - - Q r  , (3.7) 

where r2 = x 2  + y 2 .  Figure 12(d) is compatible with a geostrophic balance, since 
anticyclonic vortices are pressure highs while cyclones are pressure troughs. 

4. Numerical experiments: maximum anticyclonic destabilization 
In the present section, special care is given to the coherent-vortex dynamics for rota- 

tion rates corresponding to the maximum anticyclonic destabilization. We concentrate 
both on the anticyclonic mixing layer at Rt) = -5, and on the wake at 1R:)I = 2.5. 
The previous section has demonstrated that for these Rossby numbers, the flow in the 
anticyclonic regions eventually consists of elongated hairpin vortices stretched in the 
longitudinal direction. We here concentrate on the generation mechanisms of these 
vortices. 

4.1. Forced transition 
During the course of time evolution of the mixing layer, the highest values reached 
for and are 2.4 lco$hl and 1.3 Iw$AI, respectively, indicating an intense longi- 
tudinal vorticity stretching. We have checked that the legs of the hairpin vortices 
of the anticyclonic mixing layer presented in figure 8(c) are oriented at an angle 
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FIGURE 12. Plane wake. Relative vorticity iso-surfaces at t = 48.4rm/lU0(. (a) Nonrotating case: 
w, = &SO% of 1w!i1, light gray; w1 = 50% of Iw!Al coloured by the sign of w,, black w, < 0, dark 
gray w, > 0. (b,c) = 2.5, same isosurfaces as in (a): ( b )  view from the cyclonic side; ( c )  view of 
the anticyclonic side only. ( d )  1Rf)I = 0.5. Isosurface 111511 = 50% of Iw$hl coloured by the pressure 
P (see (3.7)): black, low pressure; dark gray, high pressure. 

of approximately 30" with respect to the (x,z)-plane. By com arison, the vorticity 

spectively. The maxima attained for the wake at 1R:)I = 2.5 are of the same order 
as for the rotating mixing layer: 2.2loghl for o: and 1.4(oTiI for 01. For the 
nonrotating case o'y = o = 1.8 1oti1, indicating that the nonrotating wake is 
far more three-dimensional than the nonrotating mixing layer. This maximum in 
the nonrotating wake case is attained at the end of the evolution at t = 80 rm/lUol 
(see figure 17a), however, while at 1R:)I = 2.5, the longitudinal stretching is maxi- 
mum at t = 35 rm/ lU~I ,  and is subsequently followed by a decay (see figure 17a). 

maxima in the nonrotating case are only 0.4 and 0.3 lo&] P for w: and wb re- 

lmax 
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FIGURE 13. Mixing layer, forced transition. Time evolution of the half-variance of the vorticity 

fluctuation components $ (w ‘ : )  , (w ’ t ) ,  and (w’:)  (normalized by at;). (a) Nonrotating case; 
( b )  R p  = -5. 

For the wake, it3eems then that rotation first vigorously enhances the anticyclonic 
longitudinal stretching, but then this mechanism is weakened. 

Figure 13 compares the time evolutions of half the variance of the vorticity fluc- 
tuation components for the nonrotating (figure 13a) and the anticyclonic (R:) = -5; 
figure 13b) mixing layer cases. In the absence of rotation, due to the quasi-two- 
dimensional nature of the mixing layer 1 a’: prevails over the other two compo- 
nents during the whole run. The results are significantly different when anticyclonic 
rotation is imposed. Indeed, for t 2 SSi/lU0l both 0’2 and 1 d2 undergo a 

similar exponential growth until t = 2OSi/1 Uol. Afterwards, a nonlinear saturation is 
observed which occurs at a lower level for the y-component than for the x-component : 
in the final stage, the latter dominates the flow and 

) 
( ) 4 J 

Similar conclusions can be drawn from the wake computation. 

4.2. Natural transition 
In the ‘forced transition’ case, the nature of the initial perturbation favours the 
appearance of the Kelvin-Helmholtz mode. We now consider the ‘natural transition’ 
and we investigate which modes are naturally selected: for the wavenumber range 
k < 14, the initial energy perturbation is equally partitioned between all wavenumbers. 
We first consider in figure 14 the growth of the kinetic energy contained in the various 
spectral modes for the anticyclonic mixing layer at R:) = -5. The picture is somewhat 
different than in the ‘forced transition’ case corresponding to figure 3. From the 
beginning, the fastest growing mode mop dominates the flow until t = 30 Si/lUol. 
Subsequently, the energy in this mode saturates and the subharmonic mode mo,3 
prevails. Here again, by late time, the energy is partitioned over a wide range of 
modes. Owing to the dominating role played by the fastest growing mode %,6, the 
flow is now entirely composed of purely longitudinal vorticity structures as shown 
on figure 15. The absence of the Kelvin-Helmholtz vortices implies, however, a less 
important longitudinal stretching than in the ‘forced transition’ case : the highest 
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FIGURE 14. Anticyclonic mixing layer at R!) = -5, natural transition. Time evolution of the kinetic 
energy fluctuations in various spectral modes mkxkz. 

values for the maxima are now 1.4 1~0th I and 0.9 Iw.$,l for 0: and 0; respectively. 
The larger amplitude of the stretching terms for 0: than for 01 (and 0:) is confirmed 

by the time evolution of the averaged quantities i (0’:) , i (di), and i (a’s> (see 
figure 16). As in the ‘forced transition case’, the x- and y-components undergo a 
similar evolution in the early stage of the development (until t = 14di/lU0l). Later 

on, all components reach a saturation level and 0’: clearly prevails over the other 
two components. By the end of the evolution, one obtains 

0 

We have checked that the anticyclonic side of the wake in natural transition at 
I R!)l = 2.5 exhibits similar behaviour, with the same longitudinal structures. 

4.3. Large-eddy simulations ( L E S )  
In order to investigate the influence of the Reynolds number on vorticity production, 
LES are performed. We designate as a(x) the large-scale (grid-scale) component of 
any quantity a(x),  and a’ = a - a the subgrid-scale part. The large-scale velocity field 
u(x, t )  = (ill, il2,zi3) satisfies the filtered Navier-Stokes equations, where the viscous 
terms in eq. (2.2) are replaced by 

- 

(4.3) 

In addition, the modified pressure n is now given by 

Rij being the total subgrid-scale Reynolds stress tensor: 

R.. - - Eu’ + u!ti: + u!~’ .  . 
l J -  (7 - 1 J  -> 1 J (4.5) 
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For the space-varying eddy viscosity v t ( x , t )  in (4.3), we here choose the structure- 
function model proposed by MCtais & Lesieur (1992). The local eddy viscosity is then 
given by 

(4.6) 
F2(x, Ax, t )  is the filtered second-order velocity structure function, A x  is the numerical 
mesh size, and ck is the Kolmogorov constant taken equal to 1.4. 

We here concentrate on the plane wake. Direct numerical simulations in the forced 
and natural transition cases are compared to large-eddy simulations with identical 
initial conditions. For the LES, the kinematic viscosity v in (4.3) is zero (‘infinite’ 
Reynolds number). For all the initial conditions tested, the amplification of the 
longitudinal vorticity is found to be more important in the LES than in the DNS 
(see figure 17a for the forced transition and figure 17b for the natural transition 
cases). This is true both in the presence of destabilizing rotation (here at 1R:)I = 2.5), 
and without any rotation. In the nonrotating case, both in the forced and natural 
transition, the LES yield w ’ y  = m ’ y  = 4.8lm$,l. Because of the strong small-scale 
three-dimensionalization of the wake, the maximum reached by the z-component is 
of the same order. In the rotating case, the anticyclonic side of the flow is ultimately 
dominated by w:, similar to results in the direct numerical simulation. In the forced 
transition, w: undergoes a slightly higher stretching than during natural transition. 
This leads to w ’ y  approximately 5lwtAl in the first case, and approximately 4.2(otA1 
in the second case. 

The influence of the subgrid-scale model on the early time, weakly nonlinear 
evolution may be investigated by considering. the kinetic energy in the longitudinal 
modes corresponding to maximum shear/Coriolis instability. Figure 18 shows, in the 
natural transition case, the temporal evolution of the kinetic energy (integrated over 
the entire y-direction) within the mo,5 and m0,6 spectral modes; direct and large-eddy 
simulations are compared. We recall that m0,6 is the fastest growing mode predicted 
by the linear-stability analysis at Re(’) = 280. In the initial stage, both spectral 
modes exhibit faster exponential growth in the LES case, and nonlinear saturation 
is observed at earlier time. The maximum energy level reached for these particular 
modes, however, is of the same order in the viscous (DNS) and ‘inviscid’ (LES) cases. 

As pointed out by MCtais & Lesieur (1992), in large-eddy simulations, low-pressure 
centres are better tracers of the coherent structures than high-vorticity regions, which 
are encumbered by small-scale structures. Contours of low P(x, t), with 

Vt(X, t )  = 0.105 ck-3’2 AX p2(~, AX, t ) ]  1’2 . 
- 

- 
P ( x ,  t )  = 71 - ;POT? (4.7) 

and ?t given by (4.4) are displayed on figure 19 for the nonrotating plane wake at 
t = 65.5rJlUol. Figure 19(a) corresponds to the large-eddy simulation of forced 
transition, and figures 19( b) and 19(c) to natural transition. Pressure troughs indicate 
not only the primary vortices of the Karman street, but also the longitudinal vortices 
between them. As shown in figure 17(a), intense longitudinal vorticity stretching takes 
place. This implies strong depressions. In the natural transition case (see figures 
19b and 19c), the longitudinal vortices exhibit a lambda-shaped structure with a 
characteristic arrangement. Indeed, the wake consists of in-phase oscillations of the 
Karman rollers; this leads to the formation of aligned lambda-shaped vortices similar 
to those studied by Meiburg & Lasheras (1988). Their spanwise wavelength is of the 
order of the size of the computational box, and they are associated with the growth 
of the m2,1 spectral mode. Notice that, in this case of natural transition of the wake 
(still without rotation), one does not obtain the helical-pairing topology which was 
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X 

FIGURE 15. Anticyclonic mixing layer at R t )  = -5, natural transition. Relative vorticity isosurfaces 
at t = 22.36JlUo(. w, = 45% of Iwt!I, blue; wI = 45% of Iw!!l coloured by the sign of wx,  orange 
w, < 0, green w, > 0. 

Time, Si/l Uol 

FIGURE 16. Anticyclonic mixing layer at Rt)  = -5, natural transition. Time evolution of the 
half-variance of the vorticity fluctuation components f (d;) , f (a’;), and f (a’:) (normalized by 

a:;). 
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FIGURE 17. Plane wake. Time evolution of the relative longitudinal vorticity half-variance 

(a’: + w’:) (normalized by cog!) obtained through direct numerical simulation (DNS) 
and through large-eddy simulation (LES), for IR!)I = co, @)I = 2.5. (a) Forced transition; 
( b )  natural transition. 

(w ’ : )  = 

Time, r,ll Uol 

FIGURE 18. Plane wake at IR!)l = 2.5, natural transition. Comparison of the time evolution of the 
kinetic energy in the longitudinal spectral modes m,s and m,6 as given by the DNS and by the 
LES. 

obtained for the mixing layer by Comte et al. (1992). This type of dislocated structure 
of the far wake had been obtained experimentally by Cimbala, Nagib & Roshko 
(1988) at low Reynolds number. It has been shown by Williamson & Prasad (1993), 
however, that it is due to a resonance between two-dimensional waves generated by 
the instability of this far wake, and oblique Karman vortices shed in the near wake. 

In the rotating case, the contribution of the Coriolis term to the pressure is 
discarded here, and the scalar considered could be qualified as the ‘ageostrophic’ 
pressure. As opposed to the vorticity iso-surfaces, which are very irregular because 
of the influence of small-scale structures, the low-pressure contours are very smooth. 
In the forced transition case, they clearly display the longitudinal hairpin vortices 
of the anticyclonic side of the wake, superposed with the cyclonic Karman rolls 
(see figure 20a). Their spanwise wavelength is approximately one-fourth of the 
computational domain width, as in the direct numerical simulation presented on 
figure 12(c). Longitudinal low-pressure structures are also distinguishable during the 
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FIGURE 19. Plane wake (1R:)I = co), at t = 65.5 rm/lUol. (a) Forced transition. The gray surfaces 
delimit the regions where the pressure defined by (4.7) satisfies Fmin < F < O.29Fmin. Fmin is the 
instantaneous pressure minimum (Pmin < 0). ( b , c )  Natural transition case, two different views of 
the same iso-surfaces. The iso-contour values are the same as in (a). 

natural transition of the wake, although the small-scale activity is so important that 
it even appears on the low-pressure contours (see figure 20b). 

4.4. Vorticity stretching mechanisms 
We here focus on the direct numerical simulation of the mixing layer at R:) = -5. A 
crucial question to be answered concerns the origin of the hairpin vortices observed 
both in the forced and natural transition cases. For that, we examine the instantaneous 
absolute vortex lines where the longitudinal vorticity component cox exceeds a certain 
threshold. Figure 21 displays, in the forced transition case at t = 26.8di/lU0l, the 
instantaneous absolute vortex lines (figure 21a) and the corresponding iso-surfaces 
of high relative vorticity modulus (figure 21b). They are very well correlated, which 
shows that the relative vorticity concentrations are in fact composed of absolute 
vortex lines concentrations. In the legs of the vortices, the absolute vortex lines are 
perfectly longitudinal. Therefore, these regions correspond to nearly zero absolute 
spanwise vorticity (i.e. the local Rossby number is approximately - 1). Notice also 
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FIGURE 20. Plane wake at = 2.5 and at t = 32.3 rm/lUol. (a)  Forced transition. Here, the gray 
surfaces delimit the regions where the 'ageostrophic' pressure pa, satisfies Fy' < FaE < 0.29F:F. 
Pr; is the instantaneous pressure minimum (Fy' < 0). ( b )  Natural transition. Same as (a) but for 
PfF  < Fag < 0.48Fyf. 

- 
- 

that these vortices, which have a zero spanwise absolute vorticity and are longitudinal, 
are not parallel to the relative vorticity ; the latter has a longitudinal component equal 
to the longitudinal absolute vorticity, and a spanwise component of -252. 

Let us now turn to the case of natural transition. As previously shown in figure 
14, the fastest growing mode m0,6 predicted by the linear-stability analysis remains 
the most energetic during a long period (until t < 30 6,/IUol). This quickly yields 
purely longitudinal vortices as exhibited in figure 15. These vortices have a spanwise 
wavelength I ,  corresponding to the fastest mode. The examination of the time 
evolution of the absolute vortex lines shows that the flow undergoes very distinct 
stages. In the first stage, the vorticity dynamics are dominated by quasi-linear 
mechanisms. All the absolute vortex lines oscillate in phase in the streamwise 
direction with a spanwise wave-length I , ,  which corresponds to the longitudinal 
mode predicted from linear-stability theory. Both vorticity components cox and my 
undergo similar growth, and the absolute vortex filaments rise approximately at 45" 
with respect to the x-direction, as shown in figure 22(a). In this stage, the vortex 
dynamics seems to be correctly described by (1.7) and (1.8). In a second stage, a 
nonlinear stretching occurs and the legs of these vortices become purely longitudinal. 
The latter correspond again to regions of near zero absolute spanwise vorticity (the 
local Rossby number is approximately -1). Figure 22(b) shows that in the final stage, 
the flow has undergone a complete change in the vortex topology as compared to 
figure 22(a): the hairpin vortices rise weakly with respect to the horizontal plane (to 
about 20"). Furthermore, the absolute vortex lines are highly concentrated within the 
legs, and the resulting absolute vortex tubes are extremely elongated. As previously 
emphasized, 0: dominates cob; by the end of the computation cok = 1.4 miA and 
cot = 0.9 a&. 

Our aim here is to test the phenomenological theory proposed by Lesieur et al. 
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FIGURE 21. Anticyclonic mixing layer at R!) = -5, forced transition. Same calculation as figure 8(c): 
(a) absolute vortex lines, (b )  isosurface of the relative vorticity modulus I(O(I = (wz + w: + w:)’/* 

corresponding to llOll = 78% of lw$,l. 

(1991) and identify the regions of the flow in which the maximum vorticity stretching 
takes place. Since we focus here on the local dynamics, it is useful to define a Rossby 
number local in space and time such as: 
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Y 

FIGURE 22. Anticyclonic mixing layer at Rt)  = -5, natural transition. Same calculation as figure 
15: absolute vortex filaments at (a )  t =. 17.86i/lUol, ( b )  t = 22.3Gi/lUoJ. The contrast change 
corresponds to a change of sign of w,. 

Note that it can be written as 

Except for the time dependency, &(y, t )  is the local Rossby number originally intro- 
duced by Pedley( 1969) (see 6 1.1). RL(x, t )  is associated with the fluctuating field. 
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FIGURE 23. Anticyclonic mixing layer at R t )  = -5, natural transition. (a) Time evolution of the 
mean velocity profile ii(y,t), normalized by IUoI. y is non-dimensionalized by ai and the time unit 
is Si/( UoI. (b)  Time evolution of the profile R&, t )  (see (4.9)). 

Let us first consider how the basic field evolves in the presence of the anticyclonic 
rotation. Figure 23(a) shows the time evolution of the mean velocity profile u(y , t ) .  
Starting from the initial hyperbolic tangent inflexional shape, the mean profile exhibits, 
in the highly nonlinear state ( t  > 20 Si/lU0l), a long range of nearly constant shear, 
whose intensity dzi(y)/dy is independent of time. This is confirmed by the profiles 
&(y, t )  (see (4.9)) which display by the end of the run ( t  = 26.8 and 35.7 Si/l U O ~  ) a 
very well defined plateau around the value of -1 (see figure 23b). Thus, the mean 
velocity profile becomes such that its vorticity exactly compensates the solid-body 
rotation vorticity. Sizeable regions of nearly zero mean absolute vorticity were first 
observed in the channel flow experiments by Johnston et al. (1972), and the recent 
simulations by Kristoffersen & Anderson (1993) have reproduced this behaviour. 
These correspond to regions of neutral stability from a linear point of view, and 
one may be inclined to think that the flow has reached a marginal stability state in 
which all instability mechanisms would eventually disappear. In the present numerical 
simulations, we have checked, however, that, during the time period of appearance of 
the constant-slope range for the mean velocity profile ( t  > 20 Si/lU0l), the averaged 
stretching rate for the dominant vorticity component w, 

keeps a constant value. This indicates that, by the end of our computation, nonlinear 
effects still dominate the flow dynamics. Therefore, the present flow configuration 
seems to provide the conditions in which the weak absolute vorticity stretching 
mechanism proposed by Lesieur et al. (1981) can operate. 

We now determine the regions of the flow in which the maximum longitudinal 
vorticity production is achieved. We focus on ox, which is the dominant vorticity 
component. From (1.2), one can derive the following equation: 

do, 
dt 

Ox- = S T ( x ,  t )  + vco,v2o,, 

where S T(x ,  t )  is the product of ox and the w, stretching and turning terms: 

(4.10) 

(4.1 1) 
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FIGURE 24. Anticyclonic mixing layer at Rf) = -5, natural transition. Two-dimensional joint 
probability density function for S T  (see (4.11)) versus the local Rossby number RA (see (4.8)). 
(a)  t = 13.46,/1 Uol ; (b )  t = 17.8 & / I  Uol ; ( c )  t = 22.3 hi/[ Uol. The density contours are logarithmic 
and spaced by a factor 0. 

where Rf, is given by eq. (4.8). We recall that o = (ox,oy,o,) is the relative 
vorticity. We here concentrate on the statistics of ST.  Figure 24 shows the two- 
dimensional joint probability density function for ST versus RL. ST is normalized 
by its variance ST,,, = (ST2)'j2.  Figure 24(a) corresponds to the quasi-linear initial 
stage ( t  = 13.4 Si/lVol). Although the statistics are noisy because they are deduced 
from only one flow realization, one can observe that maximum longitudinal vorticity 
production occurs in the flow regions such that the local Rossby number RL(x) 
is about -2.8. This is not far from the value of -2.5 predicted by the linear- 
stability analysis of Yanase et al. (1993) and comparable to the quasi-linear theory 
presented in 0 1.2.1. As time proceeds (figures 24b and 24c), the highest values of 
the production move progressively towards higher local Rossby numbers, and are 
concentrated around a value of the order of -1 by late time. Therefore, at this stage, 
the maxima of longitudinal-vorticity generation are situated in flow regions of weak 
spanwise absolute vorticity in agreement with the phenomenological theory proposed 
by Lesieur et al. (1991). 

5 .  Conclusions 
The present numerical simulations of planar mixing-layers and plane wakes confirm 

the two-dimensionalization effect of cyclonic rotation and rapid-anticyclonic rotation. 
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The two-dimensionalization consists in an inhibition of the three-dimensional mo- 
tions : the stretching mechanisms leading to longitudinal vorticity amplification are 
prevented, and the energy exchanges are directed preferentially from the mean flow 
to the two-dimensional component of the motion. The flow two-dimensionalization 
is confirmed by the spectral kinetic energy distribution, which is mainly concen- 
trated around wavenumber k, = 0; this is in agreement with the predictions of the 
Taylor-Proudman theorem. In the low Rossby number regime, cyclonic and anticy- 
clonic vortices are respectively low- and high-pressure regions, in agreement with a 
geostrophic balance. 

Both direct and large-eddy simulations show that moderate anticyclonic rotation 
(for 1R:)I > 1) greatly enhances longitudinal vorticity stretching. In the present paper, 
special care is given to the study of the three-dimensional coherent vortex dynamics 
corresponding to maximum destabilization of the anticyclonically rotating mixing 
layer and of the anticyclonic side of the wake. Maximum destabilization is achieved 
for a critical Rossby number, whose value closely corresponds to the predictions of the 
linear-stability analysis performed by Yanase et al. (1993), i.e. 1R:)I = 2.5. In the linear 
study, the instability appeared on the k,  axis and corresponds to purely longitudinal 
amplified modes; this instability is referred to as the shear/Coriolis instability. During 
the early evolution, the most amplified modes found in the computation are in close 
agreement with the linear-stability predictions. The flow quickly reaches a highly 
nonlinear state, however, with a wide range of excited modes. The energy of the 
three-dimensional motion is directly extracted from the mean flow. 

We have investigated the influence of the initial perturbation on the growth of 
longitudinal vortices of the anticyclonically rotating mixing layer and of the anti- 
cyclonic side of the wake. First, the case of forced transition is considered, using 
quasi-two-dimensional noise corresponding to energy preferentially injected into the 
Kelvin-Helmholtz (or Karman) mode. Secondly, the natural transition is studied by 
choosing an initial, three-dimensional white-noise perturbation. In the forced transi- 
tion case, we observe the simultaneous formation of Kelvin-Helmholtz (or Karman) 
vortices and longitudinal hairpin vortices which are stretched in between. The latter 
originate from the early linear amplification of the shear/Coriolis instability modes. 
As time goes on, the nonlinear stretching mechanisms produce an important increase 
of the longitudinal vorticity component. The stretching is particularly intense for the 
x-component of the vorticity, which quickly dominates the other two components. 
This ultimately leads to the complete dislocation of the primary rolls and a flow 
entirely composed of hairpin-shaped longitudinal vortices. The striking feature of 
these vortices is that they are in fact composed of purely longitudinal absolute vortex 
lines concentrations and correspond to absolute vorticity stretching. 

In the case of natural transition, we observe the rapid formation of purely longitu- 
dinal structures corresponding to regions of high relative vorticity. These structures 
have a spanwise wavelength As corresponding to the fastest shear/Coriolis mode 
predicted by the linear-stability analysis of Yanase et al. (1993). Close examination 
of the time evolution of the absolute vortex lines shows that the flow undergoes very 
distinct stages. In the first stage, the vorticity dynamics are dominated by quasi-linear 
mechanisms yielding absolute vortex lines inclined at 45" with respect to the hori- 
zontal plane. These are in phase in the longitudinal direction. We have checked that 
maximum longitudinal vorticity stretching is achieved in the flow regions with a local 
Rossby number of approximately -2.8. In a second stage, nonlinear stretching mech- 
anisms yield quasi-horizontal longitudinal hairpins of absolute vorticity. As in the 
forced transition case, these absolute vortex tubes correspond to local Rossby number 
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= -1. The ox stretching terms become larger than for my, and those terms are found 
to be maximum within the legs of the vortices. The dynamics are then dominated 
by a strong quasi-horizontal stretching of longitudinal absolute spanwise vorticity. 
During that stage, we observe that the background velocity profile exhibits a long 
range of nearly constant shear whose vorticity exactly compensates the solid-body 
rotation vorticity. 

Both in the forced and natural transition cases, the eventual states are in agreement 
with the phenomenological theory proposed by Lesieur et al. (1991). The longitudinal 
stretching is initially much more efficient than in the case without rotation. At late 
times, however, and in the case of the wake, the longitudinal vorticity thus produced 
undergoes a strong damping. This is certainly due to nonlinear effects which produce 
an intense cascade towards dissipative scales. 

Thus a very efficient mechanism to create intense longitudinal vortices in rotating 
anticyclonic shear layers is provided, thanks to a linear longitudinal instability fol- 
lowed by a vigorous stretching of absolute vorticity. It would be interesting to look 
for the existence of these longitudinal vortices in laboratory experiments studying 
rotating mixing layers and wakes. The same phenomenology should also hold for 
other types of shear flows submitted to solid-body rotation, such as separated flows, 
boundary layers and channels, or homogeneous turbulence in a constant shear. 
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